TY - JOUR
T1 - Synthesis of nickel cobalt sulfide on Ni foam for improved electrochemical energy storage
T2 - Effect of binder-free reverse pulse potentiostatic electrodeposition and redox additive
AU - Maile, N. C.
AU - Shinde, S. K.
AU - Kim, D. –Y
AU - Devarayapalli, K. C.
AU - Lee, Dae Sung
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/12/10
Y1 - 2023/12/10
N2 - Nickel cobalt sulfide (Ni-Co-S) was grown on 3D conductive Ni foam (NF) using binder-free electrochemical deposition to serve as a positive electrode (NCS@NF) for electrochemical energy storage application. Multiple cycles of reverse pulse potentiostatic electrochemical deposition (RPP-ED) were systematically applied to study their influence on the physico-chemical properties of NCS@NF. During the 300 optimized RPP-ED cycles uniform mesoporous interconnected nanoflakes of Ni-Co-S were formed on NF. The NCS@NF electrode demonstrated remarkable electrochemical storage performance, achieving a maximum areal capacity of 0.590 C cm−2 (590 C g−1) in 2 M KOH electrolyte. This remarkable property of NCS@NF can be associated with the improved ionic diffusion at the interconnected nanoflake structure and improved redox transitions at the active sites of nanoflakes. Moreover, the addition of K4(CN)6 as a redox additive improved the areal capacity of NCS@NF to 2.56 C cm−2 (2560 C g−1). Furthermore, an aqueous hybrid supercapacitor was assembled by integrating activated carbon on NF as the negative electrode, while employing NCS@NF as the positive electrode. The aqueous hybrid supercapacitor exhibited an enhanced charge-discharge potential of 1.5 V and demonstrated remarkable stability, maintaining 89% of its performance over 10,000 cycles. Notably, it achieved maximum energy and power densities, 33 μWh cm−2 and 6019 μW cm−2, respectively. These results establish its suitability for hybrid supercapacitor applications.
AB - Nickel cobalt sulfide (Ni-Co-S) was grown on 3D conductive Ni foam (NF) using binder-free electrochemical deposition to serve as a positive electrode (NCS@NF) for electrochemical energy storage application. Multiple cycles of reverse pulse potentiostatic electrochemical deposition (RPP-ED) were systematically applied to study their influence on the physico-chemical properties of NCS@NF. During the 300 optimized RPP-ED cycles uniform mesoporous interconnected nanoflakes of Ni-Co-S were formed on NF. The NCS@NF electrode demonstrated remarkable electrochemical storage performance, achieving a maximum areal capacity of 0.590 C cm−2 (590 C g−1) in 2 M KOH electrolyte. This remarkable property of NCS@NF can be associated with the improved ionic diffusion at the interconnected nanoflake structure and improved redox transitions at the active sites of nanoflakes. Moreover, the addition of K4(CN)6 as a redox additive improved the areal capacity of NCS@NF to 2.56 C cm−2 (2560 C g−1). Furthermore, an aqueous hybrid supercapacitor was assembled by integrating activated carbon on NF as the negative electrode, while employing NCS@NF as the positive electrode. The aqueous hybrid supercapacitor exhibited an enhanced charge-discharge potential of 1.5 V and demonstrated remarkable stability, maintaining 89% of its performance over 10,000 cycles. Notably, it achieved maximum energy and power densities, 33 μWh cm−2 and 6019 μW cm−2, respectively. These results establish its suitability for hybrid supercapacitor applications.
KW - Electrodeposition
KW - Hybrid supercapacitor
KW - Nickel cobalt sulfide
KW - Redox additive
KW - Reverse pulse electrodeposition
UR - http://www.scopus.com/inward/record.url?scp=85169313181&partnerID=8YFLogxK
U2 - 10.1016/j.jallcom.2023.171845
DO - 10.1016/j.jallcom.2023.171845
M3 - Article
AN - SCOPUS:85169313181
SN - 0925-8388
VL - 967
JO - Journal of Alloys and Compounds
JF - Journal of Alloys and Compounds
M1 - 171845
ER -