Abstract
Facile synthesis of highly efficient and low-cost electrocatalyst for oxygen evolution reaction (OER) is important for large-scale hydrogen production. Herein, nickel hydroxide/reduced graphene oxide (Ni(OH)2/rGO) composite thin film was fabricated using dip-coating followed by electrodeposition method on Ni foam substrate at room temperature. The deposited composite film shows amorphous nature with ultra-thin Ni(OH)2 nanosheets vertically coated on rGO surface, which provides large electrochemical surface area and abundant catalytically active sites. It exhibits a low overpotential of 260 mV @10 mA cm−2 as compared to the pristine electrodes and excellent long-term stability up to 20 hours in 1 M KOH solution. The electrochemical active surface area and Tafel slope of the composite electrode are 20.2 mF cm−2 and 35 mV dec−1, respectively. The superior water oxidation performance is a result of high catalytically active sites and improved conductivity of the composite electrode.
Original language | English |
---|---|
Pages (from-to) | 10908-10916 |
Number of pages | 9 |
Journal | International Journal of Energy Research |
Volume | 44 |
Issue number | 13 |
DOIs | |
State | Published - 25 Oct 2020 |
Keywords
- composite thin film
- dip-coating
- electrodeposition
- oxygen evolution reaction