TY - JOUR
T1 - Tauroursodeoxycholic acid (TUDCA) counters osteoarthritis by regulating intracellular cholesterol levels and membrane fluidity of degenerated chondrocytes
AU - Arai, Yoshie
AU - Choi, Bogyu
AU - Kim, Byoung Ju
AU - Rim, Wongyu
AU - Park, Sunghyun
AU - Park, Hyoeun
AU - Ahn, Jinsung
AU - Lee, Soo Hong
N1 - Publisher Copyright:
© 2019 The Royal Society of Chemistry.
PY - 2019/8
Y1 - 2019/8
N2 - Cholesterol and lipid metabolism are associated with osteoarthritis (OA) in human cartilage. High cholesterol levels in OA chondrocytes leads to decreased membrane fluidity and blocks the signaling cascade associated with the expression of chondrogenic genes. It is known that bile acid plays a role in regulating cholesterol homeostasis and the digestion of fats in the human body. Tauroursodeoxycholic acid (TUDCA), as a member of the bile acid family, also AIDS in the transport of cellular cholesterol. In this study, we hypothesized that TUDCA might be able to promote the restoration of OA cartilage by reducing membrane cholesterol levels in OA chondrocytes and by stimulating the chondrogenic signaling cascade. To assess this hypothesis, we investigated the effects of TUDCA on degenerated chondrocytes isolated from patients with OA. Importantly, treatment with TUDCA at sub-micellar concentrations (2500 μM) significantly increased cell proliferation and Cyclin D1 expression compared with the controls. In addition, the expression of chondrogenic marker genes (SOX9, COL2, and ACAN), proteins (SOX9 and COL2), and glycosaminoglycan (Chondroitin sulfate) was much higher in the TUDCA-treated group compared to the controls. We also found that TUDCA treatment significantly reduced the intracellular cholesterol levels in the chondrocytes and increased membrane fluidity. Furthermore, the stability of TGF receptor 1 and activity of focal adhesion proteins were also increased following TUDCA treatment. Together, these results demonstrated that TUDCA could be used as an alternative treatment for the restoration of OA cartilage.
AB - Cholesterol and lipid metabolism are associated with osteoarthritis (OA) in human cartilage. High cholesterol levels in OA chondrocytes leads to decreased membrane fluidity and blocks the signaling cascade associated with the expression of chondrogenic genes. It is known that bile acid plays a role in regulating cholesterol homeostasis and the digestion of fats in the human body. Tauroursodeoxycholic acid (TUDCA), as a member of the bile acid family, also AIDS in the transport of cellular cholesterol. In this study, we hypothesized that TUDCA might be able to promote the restoration of OA cartilage by reducing membrane cholesterol levels in OA chondrocytes and by stimulating the chondrogenic signaling cascade. To assess this hypothesis, we investigated the effects of TUDCA on degenerated chondrocytes isolated from patients with OA. Importantly, treatment with TUDCA at sub-micellar concentrations (2500 μM) significantly increased cell proliferation and Cyclin D1 expression compared with the controls. In addition, the expression of chondrogenic marker genes (SOX9, COL2, and ACAN), proteins (SOX9 and COL2), and glycosaminoglycan (Chondroitin sulfate) was much higher in the TUDCA-treated group compared to the controls. We also found that TUDCA treatment significantly reduced the intracellular cholesterol levels in the chondrocytes and increased membrane fluidity. Furthermore, the stability of TGF receptor 1 and activity of focal adhesion proteins were also increased following TUDCA treatment. Together, these results demonstrated that TUDCA could be used as an alternative treatment for the restoration of OA cartilage.
UR - http://www.scopus.com/inward/record.url?scp=85069783386&partnerID=8YFLogxK
U2 - 10.1039/c9bm00426b
DO - 10.1039/c9bm00426b
M3 - Article
C2 - 31143889
AN - SCOPUS:85069783386
SN - 2047-4830
VL - 7
SP - 3178
EP - 3189
JO - Biomaterials Science
JF - Biomaterials Science
IS - 8
ER -