TY - JOUR
T1 - The effect of the functionalization of multiple carrier transporting interlayers on the performance and stability of bulk heterojunction organic solar cells
AU - Hilal, Muhammad
AU - Han, Jeong In
N1 - Publisher Copyright:
© 2018, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2018/8/1
Y1 - 2018/8/1
N2 - In this paper, we describe how the functionalization of carrier transporting interlayers affects the performance and stability of poly(3-hexylthiophene): poly(3-hexylthiophene): 3′H-cyclopropa [8,25] [5,6] fullerene-C60-D5h(6)-3′-butanoic acid 3′-phenyl methyl ester (P3HT:PCBM)-based organic solar cells. Composites of graphene oxide (GO) with zinc oxide (ZnO), (GO+ZnO) and with poly(3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT:PSS) (GO+PEDOT:PSS) were produced by grafting the ZnO and PEDOT:PSS onto GO sheets using a molecular level functionalization approach. This molecular level attachment was confirmed based on X-ray diffraction patterns, an X-ray photoelectron spectroscopic analysis, and Raman spectroscopy. The functionalization interlayer helped to attach the PEDOT:PSS and ZnO firmly to the GO layer, thereby forming an air-resistant layer and also supporting the backflow of free carrier transfer from the photoactive layer to their respective electrodes. Consequently, the device fabricated with the ZnO+GO composite as an electron transport layer and the GO+PEDOT:PSS composite as a hole transport layer demonstrated a significant improvement in PCE (4.88%), reproducibility, and environmental stability (40% after 432 h). Thus, we confirmed that these air-resistant and fast carriers transporting composite layers will probably contribute significantly to the widespread commercialization of low-cost and easily fabricated organic solar cells.
AB - In this paper, we describe how the functionalization of carrier transporting interlayers affects the performance and stability of poly(3-hexylthiophene): poly(3-hexylthiophene): 3′H-cyclopropa [8,25] [5,6] fullerene-C60-D5h(6)-3′-butanoic acid 3′-phenyl methyl ester (P3HT:PCBM)-based organic solar cells. Composites of graphene oxide (GO) with zinc oxide (ZnO), (GO+ZnO) and with poly(3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT:PSS) (GO+PEDOT:PSS) were produced by grafting the ZnO and PEDOT:PSS onto GO sheets using a molecular level functionalization approach. This molecular level attachment was confirmed based on X-ray diffraction patterns, an X-ray photoelectron spectroscopic analysis, and Raman spectroscopy. The functionalization interlayer helped to attach the PEDOT:PSS and ZnO firmly to the GO layer, thereby forming an air-resistant layer and also supporting the backflow of free carrier transfer from the photoactive layer to their respective electrodes. Consequently, the device fabricated with the ZnO+GO composite as an electron transport layer and the GO+PEDOT:PSS composite as a hole transport layer demonstrated a significant improvement in PCE (4.88%), reproducibility, and environmental stability (40% after 432 h). Thus, we confirmed that these air-resistant and fast carriers transporting composite layers will probably contribute significantly to the widespread commercialization of low-cost and easily fabricated organic solar cells.
UR - http://www.scopus.com/inward/record.url?scp=85048751816&partnerID=8YFLogxK
U2 - 10.1007/s10854-018-9484-3
DO - 10.1007/s10854-018-9484-3
M3 - Article
AN - SCOPUS:85048751816
SN - 0957-4522
VL - 29
SP - 13561
EP - 13576
JO - Journal of Materials Science: Materials in Electronics
JF - Journal of Materials Science: Materials in Electronics
IS - 16
ER -