Abstract
The threshold voltage instability (Vth) in indium-gallium-zinc oxide thin film transistor was investigated with disparate SiNx gate insulators under bias-temperature-illumination stress. As SiNx film stress became more tensile, the negative shift in Vth decreased significantly from -14.34 to -6.37 V. The compressive films exhibit a nitrogen-rich phase, higher hydrogen contents, and higher N-H bonds than tensile films. This suggests that the higher N-H related traps may play a dominant role in the degradation of the devices, which may provide and/or generate charge trapping sites in interfaces and/or SiNx insulators. It is anticipated that the appropriate optimization of gate insulator properties will help to improve device reliability.
Original language | English |
---|---|
Article number | 193506 |
Journal | Applied Physics Letters |
Volume | 96 |
Issue number | 19 |
DOIs | |
State | Published - 2010 |