TY - JOUR
T1 - The optimization variables of input data of artificial neural networks for diagnosing acute appendicitis
AU - Park, Sung Yun
AU - Kim, Sung Min
PY - 2014/1
Y1 - 2014/1
N2 - The purpose of this study is to suggest an efficient diagnosis system for acute appendicitis using the artificial neural network model with optimized input variables. Acute appendicitis is one of the most common diseases of the abdomen. However, the accuracy of diagnosis is not high even with experienced surgeons due to its complex symptoms. We used the artificial neural networks model to analyze the complex problems. A total of 801 suspected acute appendicitis patients were collected and a multilayer neural network with thirteen input variables, and two hidden layers with thirty neurons were used to diagnosis acute appendicitis. The mean-square error (0.0011) was stabilized after seven input variables. The nine to thirteen input variables had a high and equal performance (98.81%, 100%, 98.39%, 100%, 99.31%, and 0.995 for specificity, sensitivity, positive predictive value, negative predictive value, accuracy and AUC, respectively). We had optimized the input variables and the performance is significantly higher than the published diagnosis method such as the Alvarado clinical scoring system. We believe that the developed model regarding the multilayer neural network would be a useful method to rapidly and correctly diagnosis acute appendicitis for clinical surgeons.
AB - The purpose of this study is to suggest an efficient diagnosis system for acute appendicitis using the artificial neural network model with optimized input variables. Acute appendicitis is one of the most common diseases of the abdomen. However, the accuracy of diagnosis is not high even with experienced surgeons due to its complex symptoms. We used the artificial neural networks model to analyze the complex problems. A total of 801 suspected acute appendicitis patients were collected and a multilayer neural network with thirteen input variables, and two hidden layers with thirty neurons were used to diagnosis acute appendicitis. The mean-square error (0.0011) was stabilized after seven input variables. The nine to thirteen input variables had a high and equal performance (98.81%, 100%, 98.39%, 100%, 99.31%, and 0.995 for specificity, sensitivity, positive predictive value, negative predictive value, accuracy and AUC, respectively). We had optimized the input variables and the performance is significantly higher than the published diagnosis method such as the Alvarado clinical scoring system. We believe that the developed model regarding the multilayer neural network would be a useful method to rapidly and correctly diagnosis acute appendicitis for clinical surgeons.
KW - Acute appendicitis
KW - Area under an ROC curve
KW - Artificial neural network
KW - Mean-square errors
UR - http://www.scopus.com/inward/record.url?scp=84893101541&partnerID=8YFLogxK
U2 - 10.12785/amis/080142
DO - 10.12785/amis/080142
M3 - Article
AN - SCOPUS:84893101541
SN - 1935-0090
VL - 8
SP - 339
EP - 343
JO - Applied Mathematics and Information Sciences
JF - Applied Mathematics and Information Sciences
IS - 1
ER -