TY - JOUR
T1 - Toward developing efficient Conv-AE-based intrusion detection system using heterogeneous dataset
AU - Khan, Muhammad Ashfaq
AU - Kim, Juntae
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/11
Y1 - 2020/11
N2 - Recently, due to the rapid development and remarkable result of deep learning (DL) and machine learning (ML) approaches in various domains for several long-standing artificial intelligence (AI) tasks, there has an extreme interest in applying toward network security too. Nowadays, in the information communication technology (ICT) era, the intrusion detection (ID) system has the great potential to be the frontier of security against cyberattacks and plays a vital role in achieving network infrastructure and resources. Conventional ID systems are not strong enough to detect advanced malicious threats. Heterogeneity is one of the important features of big data. Thus, designing an efficient ID system using a heterogeneous dataset is a massive research problem. There are several ID datasets openly existing for more research by the cybersecurity researcher community. However, no existing research has shown a detailed performance evaluation of several ML methods on various publicly available ID datasets. Due to the dynamic nature of malicious attacks with continuously changing attack detection methods, ID datasets are available publicly and are updated systematically. In this research, spark MLlib (machine learning library)-based robust classical ML classifiers for anomaly detection and state of the art DL, such as the convolutional-auto encoder (Conv-AE) for misuse attack, is used to develop an efficient and intelligent ID system to detect and classify unpredictable malicious attacks. To measure the effectiveness of our proposed ID system, we have used several important performance metrics, such as FAR, DR, and accuracy, while experiments are conducted on the publicly existing dataset, specifically the contemporary heterogeneous CSE-CIC-IDS2018 dataset.
AB - Recently, due to the rapid development and remarkable result of deep learning (DL) and machine learning (ML) approaches in various domains for several long-standing artificial intelligence (AI) tasks, there has an extreme interest in applying toward network security too. Nowadays, in the information communication technology (ICT) era, the intrusion detection (ID) system has the great potential to be the frontier of security against cyberattacks and plays a vital role in achieving network infrastructure and resources. Conventional ID systems are not strong enough to detect advanced malicious threats. Heterogeneity is one of the important features of big data. Thus, designing an efficient ID system using a heterogeneous dataset is a massive research problem. There are several ID datasets openly existing for more research by the cybersecurity researcher community. However, no existing research has shown a detailed performance evaluation of several ML methods on various publicly available ID datasets. Due to the dynamic nature of malicious attacks with continuously changing attack detection methods, ID datasets are available publicly and are updated systematically. In this research, spark MLlib (machine learning library)-based robust classical ML classifiers for anomaly detection and state of the art DL, such as the convolutional-auto encoder (Conv-AE) for misuse attack, is used to develop an efficient and intelligent ID system to detect and classify unpredictable malicious attacks. To measure the effectiveness of our proposed ID system, we have used several important performance metrics, such as FAR, DR, and accuracy, while experiments are conducted on the publicly existing dataset, specifically the contemporary heterogeneous CSE-CIC-IDS2018 dataset.
KW - Big data
KW - Conv-AE
KW - Deep learning
KW - Intrusion detection
KW - Machine learning
KW - Spark MLlib
UR - http://www.scopus.com/inward/record.url?scp=85094213535&partnerID=8YFLogxK
U2 - 10.3390/electronics9111771
DO - 10.3390/electronics9111771
M3 - Article
AN - SCOPUS:85094213535
SN - 2079-9292
VL - 9
SP - 1
EP - 17
JO - Electronics (Switzerland)
JF - Electronics (Switzerland)
IS - 11
M1 - 1771
ER -