Abstract
The histone H3K27 demethylase, UTX, is a known component of the H3K4 methyltransferase MLL complex, but its functional association with H3K4 methylation in human cancers remains largely unknown. Here we demonstrate that UTX loss induces epithelial-mesenchymal transition (EMT)-mediated breast cancer stem cell (CSC) properties by increasing the expression of the SNAIL, ZEB1 and ZEB2 EMT transcription factors (EMT-TFs) and of the transcriptional repressor CDH1. UTX facilitates the epigenetic silencing of EMT-TFs by inducing competition between MLL4 and the H3K4 demethylase LSD1. EMT-TF promoters are occupied by c-Myc and MLL4, and UTX recognizes these proteins, interrupting their transcriptional activation function. UTX decreases H3K4me2 and H3 acetylation at these promoters by forming a transcriptional repressive complex with LSD1, HDAC1 and DNMT1. Taken together, our findings indicate that UTX is a prominent tumour suppressor that functions as a negative regulator of EMT-induced CSC-like properties by epigenetically repressing EMT-TFs.
Original language | English |
---|---|
Pages (from-to) | 1288-1298 |
Number of pages | 11 |
Journal | EMBO Reports |
Volume | 16 |
Issue number | 10 |
DOIs | |
State | Published - 1 Oct 2015 |
Keywords
- EMT
- UTX
- breast CSC