TY - JOUR
T1 - ZnO-based resistive memory with self-rectifying behavior for neuromorphic devices
AU - Na, Hyesung
AU - So, Hyojin
AU - Jang, Heesung
AU - Park, Jihee
AU - Kim, Sungjun
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/10/30
Y1 - 2024/10/30
N2 - Resistive random-access memory (RRAM) is a type of next-generation low-energy memory used in artificial intelligence by controlling the high- and low-resistance states. By the migration of oxygen vacancies, two states are controlled. ITO/ZnO/TaN is proposed as a nonvolatile memory RRAM device. Additionally, the interface layer between the ITO and ZnO layer is shown by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), which results in rectifying characteristics. The device exhibits bipolar resistive switching and a gradual I-V curve through DC voltage sweep cycling after the electroforming procedure, implying the potential for neuromorphic systems. Furthermore, the device's synaptic behaviors are proved, including potentiation and depression, spike-amplitude-dependent plasticity, spike-number-dependent plasticity, spike-duration-dependent plasticity, and spike-timing-dependent plasticity suitability. Furthermore, ISPVA was utilized for better endurance, potentiation and depression, and MLC retention.
AB - Resistive random-access memory (RRAM) is a type of next-generation low-energy memory used in artificial intelligence by controlling the high- and low-resistance states. By the migration of oxygen vacancies, two states are controlled. ITO/ZnO/TaN is proposed as a nonvolatile memory RRAM device. Additionally, the interface layer between the ITO and ZnO layer is shown by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), which results in rectifying characteristics. The device exhibits bipolar resistive switching and a gradual I-V curve through DC voltage sweep cycling after the electroforming procedure, implying the potential for neuromorphic systems. Furthermore, the device's synaptic behaviors are proved, including potentiation and depression, spike-amplitude-dependent plasticity, spike-number-dependent plasticity, spike-duration-dependent plasticity, and spike-timing-dependent plasticity suitability. Furthermore, ISPVA was utilized for better endurance, potentiation and depression, and MLC retention.
UR - http://www.scopus.com/inward/record.url?scp=85198973323&partnerID=8YFLogxK
U2 - 10.1016/j.apsusc.2024.160749
DO - 10.1016/j.apsusc.2024.160749
M3 - Article
AN - SCOPUS:85198973323
SN - 0169-4332
VL - 671
JO - Applied Surface Science
JF - Applied Surface Science
M1 - 160749
ER -